Умножение и деление обыкновенных дробей
Здравствуйте, в этой статье мы постараемся ответить на вопрос: «Умножение и деление обыкновенных дробей». Если у Вас нет времени на чтение или статья не полностью решает Вашу проблему, можете получить онлайн консультацию квалифицированного юриста в форме ниже.
В математике выделяют дроби правильные и неправильные. Правильные — те, у которых числитель меньше знаменателя. Например: 1/3, 2/5, 4/12. Но бывает и так, что числитель становится больше знаменателя. Если объяснять предметно, то взято больше частей пирога, чем было тех, на которые он поделен. Такое вполне возможно и в жизни, и в математике.
Калькуляторы по алгебре
Дроби. Сравнение дробей.
Что нужно знать о дробях?
1. Дробь — число нецелое, оно обозначает количество долей целого.
2. Дробь меньше целого.
3. Чем на большее число долей поделено целое, тем эти доли меньше и наоборот — чем долей меньше, тем они, соответственно, больше.
Для обозначения долей в математике используют понятие обыкновенная дробь. С ее помощью можно записать абсолютно любое необходимое количество долей.
Обыкновенная дробь представляет собой две части, именуемые числителем и знаменателем. Записываются они разделенными горизонтальной чертой либо наклонной вправо линией. Знаменатель пишется внизу либо справа от дробной черты, он показывает общее количество частей от целого, на которое оно было поделено. А числитель пишется вверху или слева от дробной черты и показывает, сколько долей целого сейчас взяли.
Вернемся к нашему пирогу. Очевидно, что разделить его реально на сколько угодно равных частей. В зависимости от того, на сколько частей его разделили, меняется и знаменатель дроби. У пирога, разделенного одной прямой линией на две части, знаменатель будет равен 2, у разделенного на три части — 3 и т. д. Числитель же, в свою очередь, показывает, сколько частей сейчас взято. Если взяли только одну часть из двух, то получится дробь 1/2, только две из трех — 2/3 и т. д.
Освоив умножение, с делением также можно справиться легко. Правило деления дробей заключается в следующем: при делении одной дроби на другую нужно первую перемножить на обратную (перевернутую) вторую дробь. Или, иными словами, числитель первой умножить на знаменатель второй (это будет новый числитель), а знаменатель первой умножить на числитель второй (это будет новый знаменатель).
Пример:
4/7 : 2/5 = 4/7 * 5/2 = 20/14 = 10/7 = 1 3/7
Бывают ситуации, когда дробь нужно разделить на целое число. В этом случае следует представить дробь как неправильную. Числителем у нее будет это целое число, а знаменателем просто единица. Далее действовать нужно по уже знакомому правилу деления дробей из предыдущего случая.
Пример:
5/9 : 2 = 5/9 : 2/1 = (5*1) / (9*2) = 5/18
Задание:
Выполните деление дробей:
- 6/11 : 3;
- 7/15 : 2;
- 9/12 : 4.
Обыкновенная или простая дробь — это число вида a/b , где a — числитель дроби, b — знаменатель дроби. Суть дроби можно объяснить на примере пирога – например, дробь ¼ означает один кусок пирога из 4-ех.
Правильная — дробь, у которой числитель меньше знаменателя (например, 1/5, 2/9).
Неправильная — дробь, у которой числитель больше или равен знаменателю (например, 7/2, 5/5).
Смешанная — дробь, записанная в виде целого числа и правильной дроби. Она представляет собой сумму этого числа и дроби. Любую неправильную дробь можно перевести в смешанную путем выделения целой части (например, 9/4 = 2 ¼).
Десятичная — дробь со знаменателем 10, 100, 1000 и т.д. (например, 7/10 или 0,7; 9/100 или 0,09). Десятичная дробь записывается в виде целой и дробной части, которые отделяются запятой.
Чтобы сложить две дроби с одинаковыми знаменателями, нужно сложить их числители, а знаменатель оставить без изменений. Например, 1/9 + 4/9 = 5/9.
Чтобы сложить две простые дроби с разными знаменателями, следует: привести дроби к наименьшему общему знаменателю (НОК) и сложить числители полученных дробей (знаменатель будет равен НОК). Если получилась неправильная дробь, то ее нужно преобразовать в смешанную и при необходимости сократить. Например, 1/3 + 2/4 = 4/12 + 6/12 = 10/12 = 5/6.
Чтобы сложить две смешанные дроби с разными знаменателями, следует: привести дроби к наименьшему общему знаменателю (НОК), отдельно сложить целые части и числители полученных дробей (знаменатель будет равен НОК). Если получилась неправильная дробь, то нужно выделить целую часть и прибавить ее к полученной целой части, при необходимости сократить.
Алгоритм действий при делении двух дробей:
- Перевести смешанные дроби в обыкновенные (избавиться от целой части).
- Чтобы произвести деление дробей, нужно преобразовать вторую дробь, поменяв местами её числитель и знаменатель, а затем произвести умножение дробей.
- Умножить числитель первой дроби на числитель второй дроби и знаменатель первой дроби на знаменатель второй.
- Найти наибольший общий делитель (НОД) числителя и знаменателя и сократить дробь, поделив числитель и знаменатель на НОД.
- Если числитель итоговой дроби больше знаменателя, то выделить целую часть.
Доля — это каждая равная часть, из суммы которых состоит целый предмет.
Для примера возьмем два мандарина. Когда мы их почистим, то получим в каждом мандарине разное количество долек или долей. В одном может быть 6, а в другом — целых 9. Размеры долей у каждого мандарина тоже разные.
У каждой доли есть свое название: оно зависит от количества долей в конкретном предмете. Если в мандарите шесть долей — каждая из них будет определяться, как одна шестая от целого.
- Половина — одна вторая доля предмета или 1/2.
- Треть — одна третья доля предмета или 1/3.
- Четверть — одна четвертая доля предмета или 1/4.
Понятие доли можно применить не только к предметам, но и величинам. Так, например, картина занимает четверть стены — при этом ее ширина треть метра.
Обзор урока в шестом классе: упрощение дробей
На этом уроке я покажу ученикам два метода упрощения дробей. Первый метод предназначен для студентов, которым было трудно найти GCF на предыдущих уроках, но которые комфортно понимают правила делимости. Второй метод предназначен для студентов, которым не только удобно находить GCF, но и они могут делать это с помощью мысленной математики.
Мы обсудим оба метода и рассмотрим примеры для каждого метода.
Метод 1 — Найдите общий множитель
Пр. 1 — Упростить 40/48
Шаг 1. Найдите общий множитель для числителя и знаменателя.
Напомню студентам, что для нахождения общего множителя можно использовать правила делимости. Что такое общий множитель 40 и 48? Большинство студентов скажут 2, потому что они оба четные числа. На доске я буду использовать 2, чтобы показать студентам повторяющиеся шаги использования наименьшего общего множителя.
Шаг 2 — Разделите числитель и знаменатель на общий множитель.
Студенты должны иметь ответ 20/24. Можно ли снова уменьшить дробь? Откуда вы знаете?
Шаг 3 — Повторяйте процесс, пока не исчезнут общие факторы.
Окончательный ответ будет 5/6. Как узнать, что вы полностью упростили дробь? Какие наблюдения вы можете сделать?
У студентов может быть несколько ответов:
- 5 — простое число
- 5 нечетное и 6 четное
- Единственное число, которое можно разделить на 5 и 6, — 1.
- 5 и 6 являются взаимно простыми.
Хотя все приведенные выше наблюдения верны, я хочу, чтобы студенты подумали, какое из них верно для всех упрощенных дробей. При необходимости приведу еще несколько примеров упрощенных дробей. Студенты должны прийти к выводу, что если числитель и знаменатель имеют gcf равное 1, относительно простое, то дробь полностью упрощается.
Как вычесть дроби, знаменатели которых одинаковые
Дроби — это те же числа, с которыми можно производить различные действия. Их отличие от целых чисел заключается в присутствии знаменателя. Именно поэтому при выполнении действий с дробями нужно изучить некоторые их особенности и правила. Наиболее простым случаем является вычитание обыкновенных дробей, знаменатели которых представлены в виде одинакового числа. Выполнить это действие не составит особого труда, если знать простое правило:
- Для того чтобы из одной дроби вычесть вторую, необходимо из числителя уменьшаемой дроби вычесть числитель вычитаемой дроби. Это число записываем в числитель разницы, а знаменатель оставляем тот же: k/m — b/m = (k-b)/m.
Как работать с калькулятором обыкновенных дробей?
Калькулятор предназначен для решения простых дробей и дробей с целыми числами (смешанных). В будущем, планируется внедрение функции решения десятичных дробей, но в данный момент она отсутствует.
Для начала работы с дробным калькулятором необходимо понять очень простой принцип ввода данных. Все целые числа вводятся с помощью больших кнопок, расположенных слева. Все числители вводятся с помощью маленьких белых кнопок, расположенных в правом верхнем блоке цифр. Все знаменатели, соответственно, вводятся путем нажатия на кнопки в правом нижнем углу. Данный способ ввода данных является в некотором роде инновационным, поскольку четко разграничивает целое, числитель и знаменатель, что облегчает вычисления, экономит время и делает взаимодействие с приложением более эффективным.
Умножение дроби на натуральное число
Чтобы умножить дробь на натуральное число или наоборот, можно умножить дробную часть на это натуральное число, оставив знаменатель неизменным.
Чтобы разделить одну дробь на другую дробь, преобразуйте вторую дробь, а затем умножьте первую дробь на вторую дробь. Другими словами, числитель первой дроби умножается на знаменатель второй дроби (это произведение является числителем результата) знаменатель первой дроби умножается на числитель второй дроби (это произведение является результатом результата): знаменатель первой дроби является знаменателем второй дроби.
Чтобы проверить, правильно ли было выполнено деление, вы можете умножить полученный коэффициент на делитель и посмотреть, правильно ли вы получили делимое. Разделение было проведено правильно.
Остается только уменьшить полученную фракцию.
Правила деления обыкновенных дробей на типы:.
Иногда вы можете встретить записи в такой форме.
Поскольку вертикаль обозначает деление, эти записи могут быть переписаны в более удобном формате.
В записях, где вертикаль используется много раз, поставьте символ = перед последней вертикалью деления.
Сегодня мы изучаем только умножение целых чисел на дроби. В наши дни эта проблема имеет большое значение для всех — от биологов до математиков. Но сначала давайте поближе познакомимся с этим «чудо-зверем» — дробями.
Алгоритм действий при вычитании двух дробей:
- Перевести смешанные дроби в обыкновенные (избавиться от целой части).
- Привести дроби к общему знаменателю. Для этого нужно числитель и знаменатель первой дроби умножить на знаменатель второй дроби, а числитель и знаменатель второй дроби умножить на знаменатель первой дроби.
- Вычесть одну дробь из другой, путем вычитания числителя второй дроби из числителя первой.
- Найти наибольший общий делитель (НОД) числителя и знаменателя и сократить дробь, поделив числитель и знаменатель на НОД.
- Если числитель итоговой дроби больше знаменателя, то выделить целую часть.
Умножение смешанной дроби на смешанную дробь
При выполнении операции умножения смешанных чисел, их следует записать в виде неправильных дробей, после чего перемножить их по соответствующим правилам.
2 | 1 3 | × | 4 | 3 5 | = | 7 3 | × | 23 5 | = | 7 × 23 3 × 5 | = | 161 15 | = | 10 | 11 15 |
Умножение и деление обыкновенных дробей
Если в дробях присутствует целая часть, их надо перевести в неправильные — и только затем умножать по схемам, изложенным выше.
Если в числителе дроби, в знаменателе или перед ней стоит минус, его можно вынести за пределы умножения или вообще убрать по следующим правилам:
- Плюс на минус дает минус;
- Минус на минус дает плюс.
До сих пор эти правила встречались только при сложении и вычитании отрицательных дробей, когда требовалось избавиться от целой части. Для произведения их можно обобщить, чтобы «сжигать» сразу несколько минусов:
- Вычеркиваем минусы парами до тех пор, пока они полностью не исчезнут. В крайнем случае, один минус может выжить — тот, которому не нашлось пары;
- Если минусов не осталось, операция выполнена — можно приступать к умножению. Если же последний минус не зачеркнут, поскольку ему не нашлось пары, выносим его за пределы умножения. Получится отрицательная дробь.
Задача. Найдите значение выражения:
Для того, чтобы перевести смешанную дробь в обыкновенную, необходимо к числителю дроби прибавить произведение целой части и знаменателя: i nd = i · d + nd
Например,
5 34 = 5 · 4 + 34 = 234
Для того, чтобы перевести обыкновенную дробь в смешанную, необходимо:
- Поделить числитель дроби на её знаменатель
- Результат от деления будет являться целой частью
- Остаток отделения будет являться числителем